Mode d'emploi

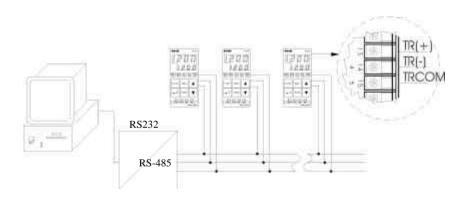
INDEX

1. INTRODUCTION	3
2. COMMUNICATIONS RS485	4
2.1. Standard RS485	
2.2. Connexions	4
3. PROTOCOLE MODBUS	6
3.1. Introduction	6
3.2. Mode de transmission	6
3.3. Structure du message	6
3.3.1 Adresse	6
3.3.2 Fonction	7
3.3.3 Données	7
3.3.4 CRC	
3.4. Description des fonctions	
3.4.1 Lire N bits	
3.4.2 Lire N registres	
3.4.3 Assigner un bit	10
3.4.4 Assigner un registre	
3.4.5 Lire byte d'état de l'instrument	
3.5. Codes d'erreur	13
4. ORGANISATION DE LA SERIE AKROS	
4.1. Table d'adresses Modbus	
4.1.1Adresses Modbus de bits	
4.1.2Adresses Modbus de registres	
4.2 Format numérique des paramètres	23

1. INTRODUCTION

Le présent mode d'emploi est adressé aux usagers ayant besoin de communications numériques avec le protocole MODBUS pour la surveillance, le contrôle et la configuration de procédés avec les contrôleurs AK49, AK49H y AK96 de la série Akros.

Il est ici considéré que l'usager possède des connaissances essentielles sur les protocoles de communications, ainsi que sur le fonctionnement des contrôleurs de la série Akros.


2. COMMUNICATIONS RS485

2.1. Standard RS485

Le standard de communications RS485 permet la connexion de plus d'un instrument par deux conducteurs avec une longueur de 1200m maximum. Il est conseillé en plus de brancher un troisième conducteur à terre et aux écrans des câbles de communications afin de donner à la ligne une protection additionnelle contre les interférences.

2.2. Connexions

Les modèles AK49, AK49H et AK96 de la série Akros admettent des connexions à des buses RS485 moyennant deux conducteurs plus un autre additionnel de terre. Pour l'utilisation d'une connexion RS485 depuis un PC il faut intercaler un convertisseur RS-3232/RS485. Si le convertisseur fournit des communications RS-485 à 4 conducteurs, il faudra relier les terminaux marqués TX- avec RX- et, encore, les terminaux marqués TX+ avec RX+. De cette manière on obtiendra deux lignes que l'on identifiera comme TR+ et TR-.

Additionnellement, exactement après le dernier instrument de la ligne une résistance de terminaison sera branchée entre TR+ et TR- de 220 Ohm.

Acheminez les câbles de communications par des voies autres que celles des câbles de puissance. Les câbles de communications peuvent être canalisés avec les câbles de signal si ceux-ci ne sont pas exposés à des sources d'interférences. L'utilisation de câbles de paire tressée, avec une capacité

entre conducteurs inférieure à 60pF, impédance caractéristique nominale à 100 KHz de 100 Ohm, et une résistance nominale inférieure à 100 Ohm/Km (conducteurs de 24 AWG minimum) est conseillée.

3. PROTOCOLE MODBUS

3.1 Introduction

Le protocole MODBUS définit une structure de messages qui peut être reconnue par plusieurs dispositifs en marae du type de réseau de communications utilisé. Le protocole décrit le procédé pour accéder à l'information d'un dispositif, comment celui-ci doit-il répondre et comment sont notifiées les situations d'erreur.

Le protocole MODBUS définit un réseau numérique de communications avec un seul master et un ou plusieurs dispositifs slave.

3.2 Mode de transmission

El mode de transmission est la structure des unités d'information contenues dans un message. Le protocole MODBUS définit deux modes de transmission: ASCII (American Satandard Code for Information Interchange) et RTU (Remote Terminal Unit). Dans un réseau de dispositifs branchés movennant le protocole MODBUS, les dispositifs utilisant des modes différents de transmission NE peuvent pas être partagés.

Les contrôleurs AK49, AK49H et Ak96 de la série Akros se communiquent en mode RTII

3.3. Structure du message

Un message consiste à une séquence de caractères pouvant être interprétés par le récepteur. C'est cette séquence de caractères aui définit la trame. Para synchroniser la trame, les dispositifs récepteurs monitorisent l'intervalle de temps écoulé entre les caractères recus. Si un intervalle plus long que trois fois et demie la mesure du temps nécessaire pour transmettre un caractère est

détecté, le dispositif récepteur ignore la trame la trame et assume que le caractère suivant qu'il va recevoir est une adresse.

3,5T	ADRESSE	FONCTION	DONNÉES	CRC	3,5T
3,5 bytes	1 byte	1 byte	N bytes	2 bytes	3,5 Bytes

3.3.1 Adresse

Le champ adresse est le premier de la trame le temps de synchronisation. Il indique le dispositif auquel le message est envoyé. Chaque dispositif du résegu doit avoir une seule adresse assignée, autre que zéro.

De la même manière, lors qu'un dispositif répond à un message, il doit tout d'abord envoyer son adresse afin que le master reconnaisse d'où vient le message.

MODBUS permet d'envoyer des messages à tous les dispositifs à la fois en se servant pour ce faire de l'adresse zéro. De toute façon, afin d'éviter des problèmes avec d'autres dispositifs sur le réseau, les modèles AK49, AK49H et AK96 de la série Akros n'acceptent pas cette sorte de messages.

3.3.1 Fonction

Le champ fonction indique au dispositif acheminé quel type de fonction doit-il réaliser.

Les modèles AK49, AK49H et AK96 acceptent les fonctions suivantes:

Code	Fonction
01 ou 02	Lire N bits (max. 255)
03 ou 04	Lire N registres (max. 52)
05	Assigner 1 bit
06	Assigner 1 registre
07	Lire byte d'état de l'instrument

vovez l'alinéa 3,4 pour la description des fonctions

332 Données

Le champ données contient l'information nécessaire afin que les dispositifs puissent exécuter les fonctions demandées, ou l'information envoyée par les dispositifs au master comme réponse à une fonction.

3.3.3 CRC

Le champ CRC est le dernier de la trame et permet au master et aux dispositifs de détecter des erreurs de transmission. Parfois, et à cause du bruit électrique ou des interférences de toute autre nature, quelques modifications du message peuvent apparaître au cours de la transmission. Le contrôle des erreurs moyennant CRC garantit que les dispositifs récepteurs ou le master ne réaliseront pas d'actions non correctes à cause d'une modification accidentelle du message.

Les contrôleurs de la série Akros **N'**envoient aucune réponse lors qu'ils détectent une erreur de CRC dans la trame recue.

Pour le calcul de CRC, les bits de stop et ceux de parité ne sont pas eus en considération.

La séquence pour le calcul CRC est ci-après décrite:

- 1. Charger un registre de 16 bits à 1's.
- 2. Réaliser un OR exclusif des premiers 8 bits reçus avec le byte haut du registre, et garder le résultat dans le registre.
- 3. Déplacer le registre un bit à droite.
- 4. a) Si le bit déplacé est un 1, faire un OR exclusif de la valeur 1010 0000 0000 0001 avec le contenu du registre et le garder dans le registre.
- 4. b) Si le bit déplacé est un 0, recommencer au point 3.

- 5. Répéter les points 3 et 4 jusqu'à avoir réalisé déplacements de bit.
- 6. Faire un OR exclusif du byte suivant de la trame avec le registre de 16 bits.
- Répéter les points 3 au 6 jusqu'à ce que tous les bytes de la trame aient été traités.
- 8. Le contenu du registre de 16 bits est le CRC, qui s'ajoute au message avec le bit le plus significatif d'abord.

3.4. Description des fonctions

3.4.1 Lire N bits (Cdo de fonction 01ou 02)

Cette fonction permet à l'usager d'obtenir les valeurs logiques (ON/OFF) des bits du dispositif acheminé. Les données de réponse sont emballées en bytes et de cette manière le premier bit demandé occupe le bit avec moins de poids du premier byte de données. Les autres le suivent de sorte que s'ils ne sont pas un nombre multiple de 8, le dernier byte est complété avec des zéros.

Trame master-dispositia:

Adresse	Code de	Adresse du		Nombre de bits à		CRC	
du	Fonction	premier bit		lire (max. 255)			
dispositif	(01 ou 02)						
1 byte	1 byte	MSB LSB		MSB	LSB	MSB	LSB

trame dispositif-master:

Adresse	Code de	Nombre	Premier	 Dernier	CR	C
du	Fonction	de bytes	byte de	byte de		
dispositif		lus	données	données		
1 byte	1 byte	1 byte	1 byte	 1 byte	MSB	LSB

Exemple: Lire 2 bits à partir du bit avec adresse 3, du contrôleur avec adresse 2.

Master-dispositif:

Adresse	Code de	Adresse du		Nombre o	de bits à	CRC		
du dispositif	Fonction	premier bit		lire				
alspositi								
02	01	00 03		00	02	4D	F8	

Dispositif-master:

Adresse	Code de	Nombre	Premier	CR	O
du	Fonction	de bytes	byte de		
dispositif		lus	données		
02	01	01	03	11	CD

La réponse nous dit que les bits d'adresse 3 (AL1) y 4 (AL2) se trouvent à 1. En conséquence, les alarmes AL1 et AL2 se trouvent activées. La réponse a assigné des zéros aux adresses qui n'aient pas été demandées depuis le master, ce qui ne veut pas dire que leur valeur réelle soit zéro.

3.4.1 Lire N Registres (Code de fonction 03 ou 04)

Cette fonction permet à l'usager d'obtenir les valeurs des registres du dispositif acheminé. Ces registres emmagasinent les valeurs numériques des paramètres et variables du contrôleur. Le rang des données va de 0 à 65536 (voyez alinéa 4.2). Les données appartenant à des adresses de registres qui dépassent la dernière adresse valable de paramètres sont assignées à zéro. (00 00).

Trame master-dispositif:

Adresse	Code de	Adresse du		Nombre de		CRC	
du	Fonction	premier registre		registres à lire			
dispositif	(03 ou 04)			(max. 51)			
1 byte	1 byte	MSB LSB		MSB	LSB	MSB	LSB

trame dispositif-master:

Adresse	Code de	Nombre	Valeur du .			Valeu	r du	CR	С
du	Fonction	de bytes	premier		dernier				
dispositif		lus	registre		gistre registre				
1 byte	1 byte	1 byte	MSB	LSB		MSB	LSB	MSB	LSB

Exemple: Lire 2 registres à partir du registre avec adresse 3, du contrôleur avec adresse 2.

Master-dispositif:

Adresse	Code de	Adresse du		Nombre de		CRC	
du dispositif	Fonction	premier registre		registres à lire			
02	03	00	03	00	02	34	38

Dispositif-master:

Adresse	Code de	Nombre de	Valeur du		Valeur du Valeur du		CF	SC
du	Fonction	bytes lus	premier		emier dernier			
dispositif			registre		regi	istre		
02	03	04	00	FO	00	3C	89	32

La réponse nous dit que les registres d'adresse 3 (Ti) et 4 (Td) ont la valeur hexadécimale 00F0 et 003C respectivement. C'est pourquoi les valeurs décimales pertinentes sont: TD=240 et Ti=60.

3.4.3 Assigner un bit (Code de fonction 05)

Cette fonction permet à l'usager d'assigner les valeurs logiques (ON/OFF) des bits du dispositif acheminé. Pour désactiver le bit il faut envoyer 00h, et pour l'activer, il faut envoyer 01h ou FFh. Cette valeur doit être écrite dans le **byte le plus significatif.**

Trame master-dispositif:

Adresse	Code de	Adresse du bit		Valeur du bit		CRC	
du dispositif	Fonction (05)						
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

trame dispositif-master:

Adresse	Code de	Adresse du bit		Valeur du bit		CF	CRC	
du	Fonction							
dispositif	(05)							
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB	

Exemple: Assigner état d'activation au bit d'adresse 5, du contrôleur avec adresse 2.

Master-dispositif:

Adresse du	Code de Fonction	Adresse du bit		Valeur du bit		CRC	
dispositif							
02	05	00	05	01	00	DC	68

Dispositif-master:

Adresse du	Code de Fonction	Adresse	e du bit	Valeur	du bit	CF	RC.
dispositif							
02	05	00	05	01	00	DC	68

La réponse nous dit que le bit 5 (Mode manuel) a été activé et en conséquence le contrôleur se trouve en mode manuel.

3.4.4 Assigner un registre (Code de fonction 06)

Cette fonction permet à l'usager de modifier le contenu des paramètres du dispositif acheminé. Les valeurs sont envoyées échelonnées selon le facteur d'échelle appartenant à chaque paramètre, dans un rang entre 0000h et FFFFh (voir alinéa 4.2).

Trame master-dispositif:

Adresse	Code de	Adres	se du	Valeur du	registre	CF	SC.
du	Fonction	reg	istre				
dispositif	(06)						
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

trame dispositif-master:

Adresse	Code de	Adresse du		Valeur du registre		CRC	
du	Fonction	reg	istre				
dispositif	(06)						
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

Exemple: Assigner la valeur 150 (0096h) au registre d'adresse 01, du contrôleur avec adresse 2.

Master-dispositif:

Adresse	Code de	Adresse du		Valeur du registre		CRC	
du dispositif	Fonction	reg	istre				
02	06	00	01	00	96	D8	11

Dispositif-master:

Adresse	Code de	Adres	se du	Valeur du	registre	CF	RC
du dispositif	Fonction	reg	istre				
dispositii							
02	06	00	01	00	96	D8	11

La réponse nous indique que le registre 1 (Point de consigne de chauffage) a reçu la valeur de 150.

3.4.5 Lire byte d'état d'instrument (Code de fonction 07)

Cette fonction permet à l'usager d'obtenir une lecture rapide de l'état de l'instrument acheminé moyennant la lecture d'un seul byte.

Trame master-dispositif:

Adresse	Code de	CR	С
du	Fonction		
dispositif	(07)		
1 byte	1 byte	MSB	LSB

Trame dispositif-master:

Adresse du	Code de Fonction	Byte d'état	CR	С
dispositif				
1 byte	1 byte	1 byte	MSB	LSB

Exemple: Demander byte d'état du contrôleur avec adresse 2.

Master-dispositif:

Adresse	Code de	CRC	
du	Fonction		
dispositif			
02	07	41	12

Dispositif-master:

Adresse du dispositif	Code de Fonction	Byte d'état	CR	С
02	07	0C	D2	30

La réponse nous dit que les bits 2 (AL1) et 3 (AL2) du byte d'état se trouvent à 1. Les alarmes AL1 y AL2 sont, donc, activées.

Byte d'état:

bit	Paramètre
0	1= overrange
1	1=underrange
2	1=AL1 activée
3	1=AL2 activée
4	1= Mode manuel
5	1= Autotuning en marche
6	1= Phase de préchauffage
7	1= Usager travaillant avec le clavier

3.5 Codes d'erreur

Presque toujours, les erreurs qui apparaissent au cours des opérations d'accès et programmation de dispositifs sont en rapport à des données non valables dans la trame. Lors qu'un dispositif détecte une erreur de cette nature, la réponse au master consiste à l'adresse du dispositif, le code de la fonction, le code d'erreur et le CRC. Pour indiquer que la réponse est une notification d'erreur, le bit qui a plus de poids du code de la fonction est activé à 1.

Les modèles AK49, AK49H et AK96 de la série Akros utilisent les codes d'erreur suivants:

Code d'erreur	Description
01	Fonction no valable
02	champ adresse de données non valable
03	champ donnée/s non valable
06	Occupé: La EEPROM est en cours.

En ce qui concerne les contrôleurs de la série Akros, il faut avoir en considération les cas suivants:

Si un dispositif reçoit une demande de lecture de N bits dépassant la dernière adresse accessible, le contrôleur envoie comme réponse la valeur 00 pour les adresses non existantes.

Si un dispositif reçoit une demande de lecture de N registres dépassant la dernière adresse accessible, le contrôleur envoie comme réponse la valeur 00 00 pour les adresses non existantes.

Si un dispositif reçoit une demande d'écriture d'un registre défini comme l'ecture seulement, le contrôleur envoi comme réponse le code d'erreur 02.

Si un dispositif reçoit une demande d'écriture d'un registre le moment où un usager est en train de modifier un paramètre depuis le clavier, le contrôleur envoi comme réponse le code d'erreur 06.

Si un dispositif reçoit une demande d'écriture d'un registre ou bit, mais un autre paramètre le rend incompatible (activer autotuning en contrôle ON/OFF, passer à mode manuel pendant que la fonction d'autotuning est activée, modifier la sortie de puissance en contrôle automatique, etc...), le contrôleur envoie comme réponse le code d'erreur 03.

Si un dispositif reçoit une demande d'écriture d'un registre ou bit appartenant à une option non installée sur l'instrument, le contrôleur envoie comme réponse le code d'erreur 03.

Si le contrôleur est en mode de contrôle ON/OFF avec une opération en mode manuel, s'il reçoit un ordre de modification de la puissance de sortie à une valeur entre 1 et 100%, le régulateur passera à 100% en marge de la valeur, sans répondre aucun code d'erreur.

4. ORGANISATION DE LA SÉRIE AKROS

Les modèles AK49, AK49H y AK96 de la série Akros munis d'interface RS485 pour connexion modbus doivent être préalablement configurés.

Les communications sont faites avec un format 1 start bit, 8 bits de données et 1 stop bit. Quatre paramètres peuvent être configurés additionnellement.

Pour ce faire (voyez le mode d'emploi de la Série Akros, disponible sur internet à l'adresse www.salbus.es/menu 3.html) il faut accéder au niveau 3 du clavier - en appuyant un bon moment sur la touche **FUNC** jusqu'à l'affichage du paramètre **inp -** et avancer - en appuyant plusieurs fois sur la touche **FUNC** - jusqu'à trouver les paramètres suivants:

	-		
COM.	\rightarrow	>1	

Adresse du contrôleur dans le réseau modbus

Valeur minimale 0 (Modbus deshabilité)

Valeur maximale 255

Vitesse de transmission

√aleur	Vitesse
0	2400 bauds
1	4800 bauds
2	9600 bauds
3	19200 bauds

Parité

Valeur	Parité
0	non
1	pair
2	impair

Temps de retard

Valeur minimale 0
Valeur maximale 10

La valeur de dLAY est le temps que le contrôleur attend avant de répondre une trame envoyée par le master. Le temps est le résultat de multiplier la valeur de dLay par 10 ms. Ce paramètre est nécessaire lorsqu'il existe des retards dans la commutation des modes réception/transmission dans les dispositifs de conversion RS232/RS485. De cette manière un temps d'attente est créé ce qui permet de synchroniser les communications et éviter des conflits.

4.1. Table d'adresses Modbus

Ci-après, une liste de tous les paramètres disponibles moyennant des communications dans la série Akros. Tous les paramètres accessibles par clavier sont disponibles par le moyen des communications. De toute façon, et du fait que la série Akros peut être configurée pour un grand nombre d'applications, si on accède à lecture ou écriture d'un paramètre lié à une option non configurée dans l'instrument, le contrôleur répond avec un message d'erreur de code 03 (voire alinéa 3.5).

4.1.1 Adresses Modbus de bits

Adresse MODBUS du bit	Paramètre				
1	1= overrange *				
2	1=underrange *				
3	1=AL1 activée *				
4	1=AL2 activée *				
5	1= Mode manuel				
6	1= Autotuning en marche				
7	1= Phase de préchauffage *				
8	1= Usager travaillant avec le clavier *				
9	1=°C				
	0=°F				
10	1=Action primaire: Chauffage				
	0=Action primaire: Réfrigération				
11	0=Contrôle avec sortie discontinue *				
	1=Contrôle avec sortie linéaire				
12	1= Contrôle pour servo-valve *				
13	1= contrôleur de systèmes d'injection *				
14	1=Réfrigération installée *				
15	1=Ligner retransmission installée *				
16	1=Ligner retransmission directe				
	0=Ligner retransmission inverse				

^{*} Adresse de lecture seulement

4.1.2 Adresses Modbus de registres

Adresse	Paramètre	Description	Min.	Max.	Echelonné	Notes
1	SP	Point de consigne de chauffage	SP.LL	SP.HL	Entier avec signe ^t	Setpoint primaire. Pour setpoint réel, voire ASP (51)
2	Pb	Bande proportionnelle	0.1	100.0	entier / 10	
3	Ti	Temps intégral	1	4000	entier	
4	Td	Temps dérivatif	1	4000	entier	
5	Су	Cycle de chauffage	1	120	entier	
6	Ну	Hystérésis de chauffage ON/OFF	1	9999	entier [†]	
7	dB	Bande morte servo-valve	1	20	entier	
8	REF.C	Point de consigne de réfrigération	-999	9999	entier [†]	
9	P.C	Configuration de réfrigération	0	100	entier	
10	Cy.C	Cycle de l'action de réfrigération	1	120	entier	
11	Ну.С	Hystérésis action de réfrigération	1	9999	entier [†]	

	1					T
12	C.A1	Configuration Alarme 1 0 – deshabilitée 1 - HI DIR absolue 2 - HI REV absolue 3 – LW DIR absolue 4 – LW REV absolue 5 - HI DIR relative 6 - HI REV relative 7 - LW DIR relative 8 - LW REV relative 9 – WINDOW DIR 10 – WINDOW REV	0	10	entier	
13	SP.A1	Setpoint absolu alarme 1	**	**	entier avec signe [†]	Min/Max selon la sonde d'entrée
14	r.A1	Setpoint relatif alarme 1	-999	9999	entier avec signe [†]	
15	Hy.A1	Hystérésis de l'alarme 1	1	9999	entier [†]	
16	C.A2	Configuration Alarme 2 0 – deshabilitée 1 - HI DIR absolue 2 - HI REV absolue 3 - LW DIR absolue 4 - LW REV absolue 5 - HI DIR relative 6 - HI REV relative 7 - LW DIR relative 8 - LW REV relative 9 – WINDOW DIR 10 – WINDOW REV	1	10	entier	

17	SP.A2	Setpoint absolu alarme 2	**	**	entier avec signe ^t	Min/Max selon la sonde d'entrée
18	r.A2	Setpoint relatif alarme 2	-999	9999	entier avec signe ^t	
19	Hy.A2	Hystérésis de l'alarme 2	1	9999	entier [†]	
20	S.SP	Setpoint secondaire	SP.LL	SP.HL	entier avec signe	
21	BIAS	Voies de la variable d'entrée	-999	9999	entier avec signe ^t	
22	unit	Unités 0- °F 1- °C	0	1	entier	
23	out.L	Output limit	0	100	entier	
24	SP.LL	Setpoint low limit	(son de)	SP.HL	entier avec signe [†]	
25	SP.HL	Setpoint High limit	SP.LL	(son de)	entier avec signe [†]	
26	in.At	Autotuning initial 1- Activé 0- Desactivé	0	1	entier	
27	At.ty	Type d'autotuning 1- Step réponse 0- Relay feedback	0	1	entier	
28	Ct.ty	Type de contrôle 0 – On/Off 1- PID 2- PI+D	0	2	entier	
29	HEAT	Action primaire 0 – Réfrigération 1- Chauffage	0	1	entier	

30	inP	Sonde d'entrée 0- J (0600°C) 1- L (0600°C) 2- K (01200°C) 3- N (01200°C) 4- T (0400°C) 5- R (01600°C) 6- S (01600°C) 7- RTD (0600) 8- RTD (-99.9200.0) 9- 05V 10- 010V 11- 020mA 12- 420 mA	0	12	entier	
31	dP	Points décimaux	0	2	entier	
32	inL	Commencement d'échelle entrée linéaire	-999	inH-1	entier avec signe ^t	
33	inH	Fond d'échelle entrée linéaire	inL+1	9999	entier avec signe ^t	
34	rSP	Setpoint distance 0- desactivé 1- activé	0	1	entier	
35	rSP.L	Commencement d'échelle setpoint distance	(son de)	rSP.H -1	entier avec signe ^t	
36	rSP.H	Fond d'échelle setpoint distance	rSP.L +1	(son de)	entier avec signe [†]	
37	Lrt	Ligner retransmission 0- Inverse	0	1	entier	

		1- Directe				
38	Lrt.L	Commencement d'échelle de ligner retransmission	(son de)	Lrt.H- 1	entier avec signe [†]	
39	Lrt.H	Fond d'échelle de ligner retransmission	Lrt.L+	(son de)	entier avec signe ^t	
40	d.in	Entrée numérique 0- Setpoint secondaire 1- Protection du clavier	0	1	entier	
41	Code	Password de protection du clavier	0	9999	entier	
42	Level	Niveau de protection du clavier 0- Consulter mais sans modifier 1- Consulter mais modifier Setpoint 2- Ni consulter ni modifier	0	2	entier	
43	Addr	Adresse Modbus du contrôleur	0	255	entier	
44	bAud	Vitesse de transmission de Modbus 0 –2400 1 –4800 2 –9600 3 –19200	0	3	entier	
45	Prty	Parité en com. Modbus r/w 0 – none 1 – even	0	2	entier	

		2 – odd				
46	dLAy	Temps de retard en Modbus	0	10	entier	(x10 ms)
47	Out	Sortie de contrôle	0	100	entier	%
48	Status	Byte de status *			entier	
		bit 0 1-overrange bit 1 1-underrange bit 2 1-AL1 activé bit 3 1-AL2 activée bit 4 1- Mode manuel bit 5 1- Autotuning en marche bit 6 1- Phase de préchauffage bit 7 1- Opération avec le clavier				

49	Conf	Configuration d'usine * bit1 0-Contrôle avec sortie discontinue 1-Contrôle avec sortie linéaire bit2 1-Contrôle servovalve bit3 1-Contrôle systèmes d'injection bit4 1-Relé de réfrigération installé bit5 1-Ligner retransmission installée bit6 0 bit7 0 bit8 0			entier	
50	PV	Valeur de la variable de procédé *	**	**	0commencement d'échelle 65535Fin d'échelle	
51	ASP	Setpoint réel *	SP.LL	SP.HL	entier avec signe [†]	Setpoint opérationnel
52	DISP	Valeur de la variable du processus en résolution du display *	**	**	entier avec signe [†]	

^{*} Registres de lecture seulement

[†] Si la sonde d'entrée (inP) est celle numéro 8 (RTD /-99.9...200.0), il faut diviser par 10. Si la sonde d'entrée est linéaire (inP = 9,10,11 o 12), en fonction de la valeur de dP (0, 1 o 2), il faut diviser par 1, 10 o 100 respectivement.

^{**} Les valeurs maximale et minimale dépendent de l'échelle de la sonde sélectionnée (inp).

4.2. Format numérique des paramètres

Les paramètres de la table ci-dessus sont échelonnés de trois formes différentes:

Entiers: Valeurs numériques hexadécimales comprises entre 0000h et FFFFh (0 et 65535).

Entiers avec signe: valeurs numériques hexadécimales avec signe. Ainsi, pour des valeurs positives la marge est réduite à des valeurs de 0000h à 7FFFh (0 à 32767) et pour des valeurs négatives, de 8001h à FFFFh (-32767 à -1).

Echelonnés: Le paramètre 50 (PV) doit être échelonné aux valeurs d'échelle de la sonde sélectionnée. En marge du fait que l'échelle de la sonde puisse avoir des valeurs négatives, ce paramètre est toujours codifié comme entier sans signe. L'échelonnement postérieur à l'échelle de la sonde créera le signe pertinent.