LA SERIE KOSMOS

THERMOMIETIRE DIGITAL DE TABLEAU

MODELE MICRA-T

Manuel d'instructions Edition Mars 1999 Code: 30726001 Valide pour appareils à partir du n° 160.000

INTRODUCTION A LA SERIE KOSMOS

La série KOSMOS est basée sur un nouveau concept d'instruments digitaux qui est traduite par une architecture modulaire et polyvalente.

La conception bassée sur l'assemblage de modules permet d'obtenir de nombreuses fonctions de sortie par le seul ajout d'options correspondantes.

Le logiciel de programmation reconnaît les options qui sont placées et agit en conséquence, commandant les données nécessaires à leur fonctionnement dans les limites désirées.

Dans l'appareil de base, sans option de sortie, le logiciel ignorera toutes les données correspondant à ces options.

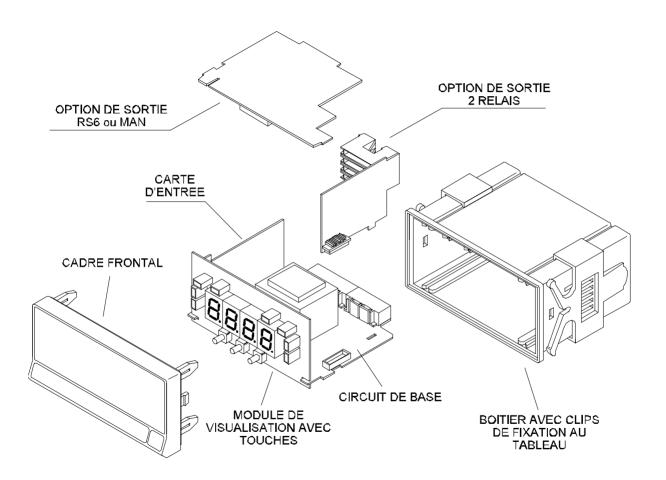
La calibration de l'instrument est réalisée en fabrication et les données de réglage sont sauvegardées en mémoire.

Pour conséquence, on élimine totalement toute configuration par pont ou potentiomètre d'ajustage. La configuration pour adapter l'instrument aux caractéristiques désirées s'effectue au moyen des touches du clavier frontal selon un menu de programmation qui présente des messages à l'affichage pour une facile identification des pas de programmes. Les autres caractéristiques générales de la gamme KOSMOS sont:

- RACCORDEMENT au moyen de barrettes sans vis avec système de maintien par pince CLEMP-WAGO.
- DIMENSIONS modèles ALPHA et BETA 96x48x120mm (DIN 43700) modèles MICRA et JR/ JR20 96x48x60mm (DIN 43700)
- BOITIER en polycarbonate s/UL-94 V0.
- FIXATION sur panneau par pinces élastiques intégrées et sans nécessité d'outillage spécial.
- ETANCHEITE frontale IP65.

Pour garantir les spécifications techniques de l'instrument il est conseillé de vérifier périodiquement sa calibration fixée en accord aux normes ISO9001 et en fonction des critères d'utilisation pour chaque application.

La calibration de l'instrument devra être réalisée par un Laboratoire Accrédité ou directement par le Fabricant.


INSTRUMENTS DIGITAUX DE TABLEAU

SERIE KOSMOS

MODELE MICRA-T

TABLE DES MATIERES

1.1 DESCRIPTION DU CLAVIER ET DE L'AFFICHAGE	4/ 5 6/ 7
2. MISE EN OEUVRE. COMMENT UTILISER? 2.1 ALIMENTATION / CONNECTEURS	9/ O
2.2 INTRODUCTION A LA PROGRAMMATION. CONFIGURATION DE L'ENTREE	
2.3 RACCORDEMENT DU SIGNAL D'ENTREE	
3. FONCTIONS DE MEMOIRE (PIC, VAL, RESET)	. 15
OPTIONS DE SORTIE	. 16
5 . SPECIFICATIONS TECHNIQUES	
5.1 CARACTERISTIQUES TECHNIQUES	. 17
5.2 DIMENSIONS ET MONTAGE	. 18
5.3 DÉCLARATION DE CONFORMITÉ	. 19

1. MODELE MICRA-T

Le modèle MICRA-T de la série KOSMOS est un indicateur de quatre digits et de format compact destiné à la mesure de températures. De conception simple, sans renoncement aux importantes prestations de la série KOSMOS, les MICRA sont spécialement recommandés pour les applications comportant seulement une indication et, éventuellement, un raccordement par liaisons pour communication ou analogue et sorties de contrôle par relais.

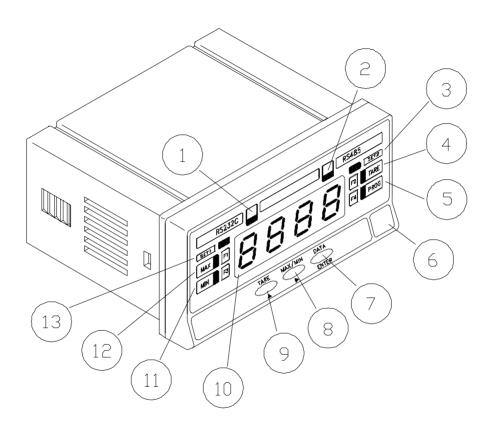
Totalemente programmable par touche, MICRA-T peut être configuré, dès le départ, pour un raccordement direct sur une sonde de température type Pt100 ou sur les thermocouples J, K ou T. On peut aussi bien travailler en degrés ou dixièmes de degrés Celsius ou Fahreinheit.

Il est également possible de programmer un offset de -99 à +99 points d'affichage, permettant à l'appareil d'indiquer une valeur réelle et ainsi, par exemple, pouvoir compenser un éventuel décalage entre la valeur réelle et la valeur mesurée.

Les autres fonctions de l'appareil sont l'enregistrement et l'affichage des valeurs maximale (pic) et minimale (val) ainsi que la fonction offset et remise à zéro de ces mémoires.

L'instrument de base est un ensemble électronique soudé composé d'une carte de base, d'un module d'affichage et d'une carte d'entrée.

En option, on peut installer une carte de sorties qui contient les protocoles de communication série RS232C et RS485 (RS6) ou une carte de sortie analogique 4-20 mA (MAN) et une carte de contrôle avec 2 relais type 1RT 8A (2RE).

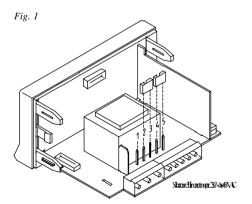

Chacune des options est pourvue de connecteurs indépendants avec sortie à la partie postérieure de l'appareil, leds de signalisation visibles sur le panneau frontal et un module de programmation individuel qui s'active automatiquement une fois installées.

Les sorties sont opto-isolées par rapport au signal d'entrée, de la sortie relais et de l'alimentation.

Cet instrument est conforme aux directives communautaires suivantes: 89/336/CEE et 73/23/CEE

PRECAUTION: se référer au manuel d'instructions pour conserver les protections de sécurité.

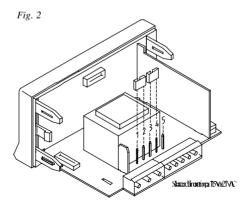
DESCRIPTION DES FONCTIONS DU PANNEAU FRONTAL

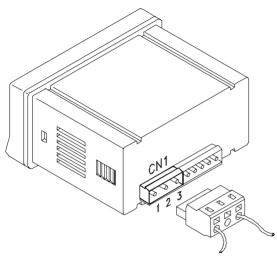

Nº	Designation	Fonction en mode RUN	Fonction en mode PROG
1	LED RS232C	Sortie RS232C sélectionnée	Programmation de la sortie RS232C
2	LED RS485	Sortie RS485 sélectionnée	Programmation de la sortie RS485
3	LED SET2	Indique l'activation du relais du seuil 2	Indique la programmation du seuil 2
4	LED TARE / F2	Témoin d'une valeur d'offset mémorisée	Indique la programmation des sorties série ou de la sortie analogique
5	LED PROG / F4	-	Appareil en cours de programmation
6	ETIQUETTE	Unité de mesure	
7	TOUCHE ENTER	Entrée en mode PROG. Visualise données	Valide données. Avance la programmation
8	TOUCHE MAX/MIN	Apelle la valeur de pic ou val à l'affichage	Déplacement d'un digit vers la droite
9	TOUCHE TARE	-	Incrémente valeur. Combinée avec ENTER, entre dans la programmation des seuils.
10	DISPLAY	Visualise la variable d'entrée	Visualise paramètres de programmation
11	LED MIN / F3	Témoin d'une valeur de val	-
12	LED MAX / F1	Témoin d'une valeur de pic	Indique la programmation de l'entrée
13	LED SET1	Indique l'activation du relais du seuil 1	Indique la programmation du seuil 1

2. MISE EN OEUVRE

La première opération à effectuer sera la configuration de l'entrée en fonction du type de capteur et l'indication qui devra lui correspondre à l'affichage. Pour celà, l'appareil sera mis sous tension après vérification de l'équivalence entre la tension du réseau et la tension d'alimentation de l'appareil (voir paragraphe suivant).

Une fois l'appareil alimenté et sans aucun signal sur le connecteur d'entrée, il faut accéder au mode de programmation pour sélectionner les paramètres de fonctionnement désirés (type d'entrée, échelle, résolution, offset d'affichage).


Il ne restera plus qu'à connecter le signal d'entrée et l'appareil sera prêt à effectuer la mesure.


Les instruments avec alimentation 230/115 V et 24/48 V AC 50/60 Hz sont livrés pour un raccordement à 230 V (*voir Fig. 1*) ou à 24 V (*voir Fig. 2*), selon l'étiquette identificatif. Pour changer l'alimentation de 230 à 115 V (*voir Fig. 2*), ou de 24 à 48 V (*voir Fig. 1*), éffectuer les ponts sur le selecteur d'alimentation sur la carte de base et après modifier l'étiquette.

Les instruments avec alimentation en continu sont livrés pour la tension specifiée sur l'étiquette (12 V ou 24 V DC suivant demande).

S'il est nécessaire de faire un changement de ponts internes, il faut démonter le boitier et extraire la partie électronique selon la page 18.

2.1. RACCORDEMENT ALIMENTATION

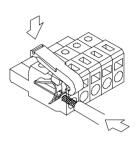
VERSIONS AC

PIN 1 - PHASE AC

PIN 2 - GND (TERRE) PIN 3 - NEUTRE AC VERSIONS DC

PIN 1 - POSITIF DC PIN 2 - Non raccordé

PIN 3 - NEGATIF DC



ATTENTION! Pour assurer la compatibilité electromagnétique il faut tenir compte des recommandations suivantes:

- -Les câbles d'alimentation doivent être séparés des câbles de signal et ne jamais avoir le même cheminement.
- -Les câbles de signal doivent être blindés et leur blindage raccodé à la borne de terre (pin2 CN1).

CONNECTEURS

Pour effectuer les raccordements, débrocher le connecteur femelle monté dans la fiche dormante de l'appareil, introduire l'extremité dénudée du fil correspondant à chacun des points de raccordement dans son logement en ouvrant celui-ci par action sur le levier (voir figure) et en le relachant pour pincer l'extrémité du câble dénudé. Procéder ainsi avec tous les

points de raccordement du connecteur puis réenficher ce dernier. Les connecteurs admettent des câbles de section comprise entre

Les connecteurs admettent des cables de section comprise ent 0.08mm² et 2.5mm² (AWG $26 \div 14$).

Certains points de raccordement disposent d'un embout plastique de maintien pour assujetir les câbles de section inférieure à 0.5mm². Ces embouts seront retirés pour les autres câbles de section supérieure.

Section des câbles:

-Alimentation et signal d'entrée: >0.25mm²

INSTALLATION

Pour satisfaire la norme EN61010-1, pour les équipements raccordés en permanence au réseau, l'installation d'un interrupteur magnétothermique ou d'un disjoncteur qui sera placé en amont, facilement accessible pour l'opérateur et identifié comme dispositif de protection.

2.2. INSTRUCTIONS DE PROGRAMMATION

Raccorder l'instrument au réseau. Pendant une seconde tous les segments, points décimaux et leds du panneau frontal seront éclairés en vérification de leur bon fonctionnement. Ensuite, en absence de signal, apparaîtront 3 zéros à l'affichage.

Pour entrer dans le mode de programmation, appuyer sur la touche "ENTER". La led **PROG** s'éclairera et l'affichage indiquera **Pro**. C'est le niveau d'entrée dans la programmation d'où l'on pourra accéder aux modules de configuration de l'entrée (led **F1** éclairée), et, si elles sont présentes, les sorties série ou la sortie analogique (led **F2** éclairée) et les sorties à 2 relais (leds **SET1** et **SET2** éclairées).

Le déplacement d'un module à un autre s'effectue au moyen de la touche "▶" et, une fois la led correspondante au module désirée éclairée, un appui sur "ENTER" donnerá accés à la programmation des paramètres rélatifs à ce module.

La séquence normale à suivre dans chaque pas sera l'appui sur la touche " > " un certain nombre de fois pour effectuer les changements et sur la touche "ENTER" pour mémoriser la donnée programmée et passe au pas de programme suivant.

Les figures disposées dans cet ordre dans les instructions pas à pas donnent une indication avec des segments blancs qui signifient que cette indication est une valeur issue d'une programmation antérieure. Les options possibles sélectionna-bles au moyen de la touche " > " sont données dans le texte, à droite de la figure.

BLOCAGE DE LA PROGRAMMATION.

Une fois terminée la programmation, il est recommandé de bloquer son accès pour éviter des modifications intempestives des paramètres programmés.

Le blocage s'effectue en ôtant le pont enfichable situé côté soudures du circuit d'affichage (voir figure 10.1).

NOTE: Il est nécessaire de déconnecter l'alimentation avant de modifier la position du pont.

Une fois la programmation verrouillée, il sera tout de même possible d'accéder aux routines de programmation pour vérifier le contenu de celle-ci mais sans pouvoir en modifier les choix. Dans ce cas, quand on effectuera un appui sur la touche "ENTER" en lieu et place de l'indication **Pro** il y aura l'indication **dALA**.

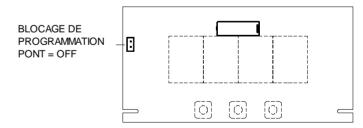
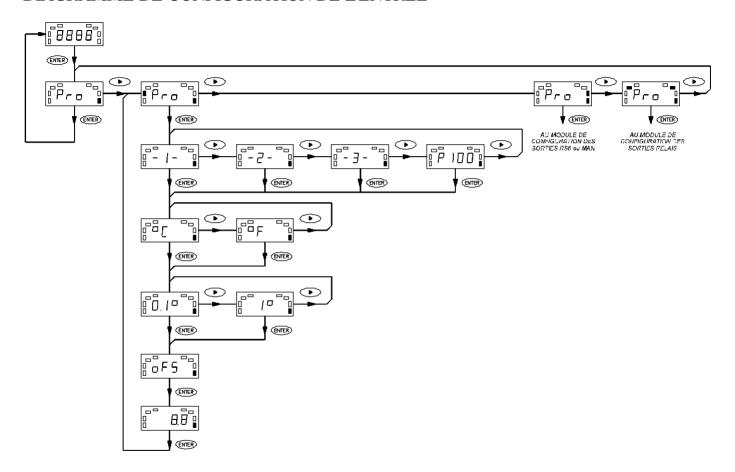
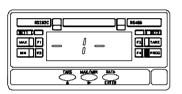



Fig. 10.1: Circuit display REF. 414A (côté soudure)

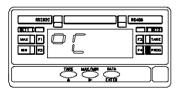
DIAGRAMME DE CONFIGURATION DE L'ENTREE

INSTRUCTIONS DE CONFIGURATION DE L'ENTREE


[12.1]

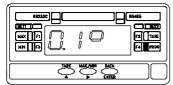
La figure 12.1 présente l'indication correspondante au niveau d'accés dans le module de configuration de l'entrée (leds F1 et PROG éclairées). Appuyer sur pour entrer dans ce module.

Une fois terminée la programmation des pramètres d'entrée, l'instrument retournera dans ce même pas. A ce moment, pour retourner au mode travail, il faudra appuyer sur la touche " > " et, en vérification, on aura la seule led PROG active. Un nouvel appui sur "ENTER" permettra de mémoriser les données et passer en mode travail.

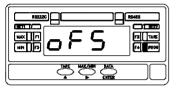

[12.2]

A partir de l'appui sur "ENTER" au pas précedent, par appuis successifs sur la touche on fait défiler les digits -1- (correspondant à une entrée thermocouple J), -2- (entrée thermocouple K), -3- (entrée thermocouple T) puis le message P100 (pour une entrée de sonde Pt100).

Dès que l'on aura obtenu l'indication correspondante à l'entrée souhaitée on la validera par appui sur qui la mémorisera et passera au pas de programmation suivant.


[12.3]

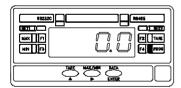
La figure 12.3 présente la phase de programmation de l'échelle qui peut être donnée en °C (Celsius) ou °F (Fahreinheit).


Sélectionner l'échelle en passant de l'une à l'autre par appuis successifs sur et valider le choix par qui fera passer au pas de programmation suivant (fig. 13.1).

[13.1]

Dans ce pas, l'indication correspond à la résolution programmée antérieurement. Au moyen de , on fera passer l'affichage alternativement de "0.1°" (résolution au dixième de degrés) à "1°" (résolution au dégré) et on sélectionnera la valeur souhaitée par ui permettra de passer au pas de programmation suivant.

[13.2]

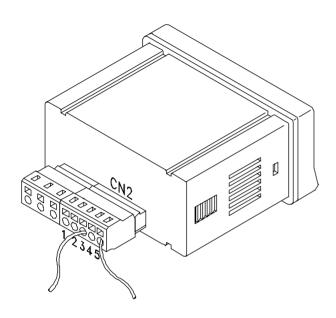


L'indication fig. 13.2 reste visible 2 secondes puis présente la valeur antérieurement programmée.

Normalement, il n'est pas nécessaire de programmer une valeur d'offset, excepté dans les cas ou il y a une différence connue entre la valeur réelle et la valeur mesurée par la sonde. Par exemple, si la sonde indique que l'endroit où elle se trouve est à 10 degrés de moins que la température réelle à contrôler, il faudra introduire un offset positif de 10° .

Au bout de 2s ou par appui sur on accède à la programmation de cet offset selon la figure 13.3.

[13.3]


La valeur antérieurement programmée pour l'offset (généralement zéro) apparaît sur deux digits, dont le digit de gauche en clignottement. Au moyen de la touche on fera varier la valeur de ce digit de 0 à 9 et de -0 à -9.

Une fois la valeur désirée est à l'affichage, l'appui sur permet accéder à la programmation du digit de droite (touche pour varier de 0 à 9).

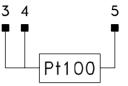
L'offset programmable est de ±9.9° avec résolution au dixième de degré ou ±99° avec résolution au degré. La led "TARE" sera activée en permanence lorsqu'un offset contenu dans la mémoire sera différent de zéro.

Appuyer sur (Appuyer sur valider la donnée introduite et passer au pas d'entrée dans le module (fig. 12.1).

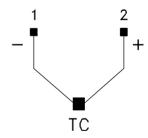
2.3. RACCORDEMENT SIGNAL D'ENTREE

CONNECTEUR CN2

PIN 1 = -TC (négatif thermocouple)


PIN 2 = +TC (positif thermocouple)

PIN 3 = Pt100


PIN 4 = Pt100 (même que pin 3)

PIN 5 = Pt100 COMM (commun Pt100)

THERMOMETRE Pt100

THERMOMETRE THERMOCOUPLE

3. FONCTIONS DE MEMOIRE

FONCTION DES TOUCHES

MICRA-T dispose de 3 touches, toutes opératives en mode programmation alors que, seule, la touche "MAX/MIN" n'est utilisable en mode travail.

Quatre leds de signalisation témoignent également des fonctions en cours et deux leds signalement l'état de fonctionnement des sorties RS232 et RS485.

VISUALISATION DES VALEURS DE PIC ou VAL

L'instrument enregistre et mémorise les valeurs maximale (PIC) et minimale (VAL) rencontrées par la variable de mesure depuis la dernière réinitialisation.

Dans le fonctionnement normal de l'appareil, on peut visualiser à tout moment les valeurs de PIC et de VAL par appui sur "MAX/MIN". La première impulsion fait apparaître la valeur de PIC (éclairage de la led MAX), la deuxième la valeur de VAL (éclairage de la led MIN). Une pulsation supplémentaire sur "MAX/MIN" replacera l'affichage sur la valeur courante de la mesure.

REINITIALISATION DES MEMOIRES DE PIC et VAL

Pour réinitialiser les mémoires de PIC et VAL, appuyer sur "MAX/MIN" pour afficher la valeur que l'on désire réinitialiser (les led MAX et MIN indiquent la valeur affichée).

Appuyer sur "MAX/MIN" pendant 5 secondes au bout desquelles apparaîtra l'indication -999 pour la réinitialisation de la valeur de PIC ou 9999 pour la réinitialisation de la valeur de VAL.

FONCTIONS DES LEDS

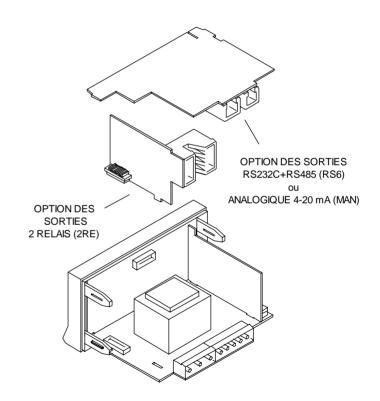
Comme déja indiqué, la led "PROG" éclairée signifie que l'instrument est en mode programmation.

Les leds MAX et MIN indiquent que le paramètre affiché est respectivement la valeur de PIC ou la valeur de VAL.

La led TARE est éclairée lorsque l'offset d'affichage en mémoire est différent de zéro (voir page 13).

4. OPTIONS DE SORTIE

Sous forme d'option, le modèle MICRA-T peut incorporer simultanément jusqu'à deux options de sorties, une RS6 et une 2RE ou une MAN et une 2RE.


- Une carte de sorties série avec interface de communications RS232C et RS485, en mode half-duplex 1200 à 9600 baud.
 Seulement une de ces sorties peut être active selon sélection par software.

 Ref. RS6
- Une carte de sortie analogue 4-20 mA, que donnera une signal proportionnel au plage de l'affichage programmée. Ref. MAN
- Une carte de contrôle avec 2 sorties à relais de type 1RT 8A @ 250V AC / 150V DC. Les sorties disposent de mode HI/LO sélectionnable et hystérésis/retard programmable. Ref. **2RE**

Les options de sortie sont livrées individuellement sous forme de cartes additionnelles avec un manuel d'instructions spécifique décrivant ses caractéristiques et son mode de mise en oeuvre et de programmation.

Facilement raccordables à l'appareil de base au moyen des connecteurs enfichables, une fois installées, elles sont recon-nues par l'instrument qui active un module de programmation par touches correspondant.

Pour une meilleure information sur les caractéristiques de ces options, se référer au manuel d'instructions livré avec la carte.

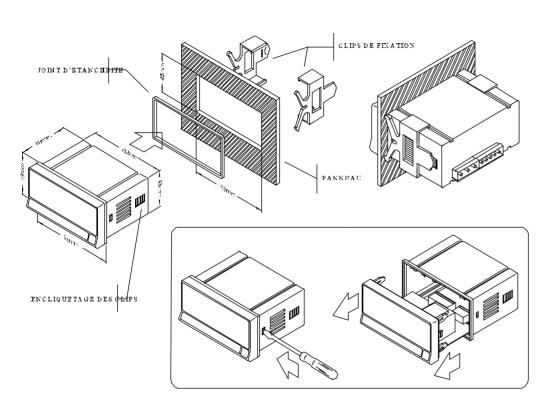
5. SPECIFICATIONS TECHNIQUES

SIGNAL D'ENTREE

.Configuration	 différentiel asymétrique
.Compensation union froide	<u>±</u> 0 °C à +50 °C
.Courant d'excitation Pt100	$\dots < 1 \text{ mA DC}$
.Résistance maxi des cables	20 Ω/cable (équilibrés)

Entrée	Plage (res. 0.1 °)	Plage (res. 1 °)
	-50.0 à +200.0 °C	-50 à +800 °C
TC J	-58.0 à +392.0 °F	-58 à +1562 °F
	-50.0 à +200.0 °C	-50 à +1250 °C
TC K	-58.0 à +392.0 °F	-58 à +2282 °F
	-100.0 à +100.0 °C	-200 à +400 °C
TC T	-100.0 à +212.0 °F	-328 à +752 °F
	-100.0 à +200.0 °C	-100 à +800 °C
Pt100	-100.0 à +212.0 °F	-148 à +1472 °F

PRECISION À 23 ° ±5 °C


.Erreur maxi:
Pt100 (resolution 0.1 °C) \pm (0.1 % de la lecture +0.2 °C)
Pt100 (resolution 1 °C) ±(0.1 % de la lecture +0.6 °C)
TC (resolution 0.1 °C) \dots \pm (0.2 % de la lecture +0.5 °C)
TC (resolution 1 °C) $\dots \pm (0.2 \% \text{ de la lecture} + 1 °C)$
. Union froide
Coefficient de température 100 ppm/ $^{\circ} \mathrm{C}$
.Temps d'échauffement 5 min

ALIMENTATION

.Alternatif
.Continu 12 V (10.5 à 16 V) DC, 24 V (21 à 32 V) DC
.Consommation
FUSIBLES (DIN 41661)
.Micra-T (230/115 V AC) F 0.1A/ 250 V
.Micra-T2 (24/48 V AC) F 0.2A/ 250 V
.Micra-T3 (12 V DC) F 1A/ 250 V
.Micra-T4 (24 V DC) F 0.5A/ 250 V
CONVERSION A/D
.Technique double rampe
.Resolution
.Cadence
AFFICHAGE
.Type999/9999, 4 digits rouges 14 mm
.LEDs 4 de fonctions et 4 de sorties
.Cadence d'affichage 330 ms
.Dépassement d'échelle et sonde coupée OvE
AMBIANCE / DIMENSIONS
.Température de travail10 °C à +60 °C
.Température de stockage25 °C à +85 °C
.Humidité relative <95 % à 40 °C
.Dimensions
.Poids
.Matériau du boitier polycarbonat s/UL 94 V-0
.Etancheité frontal IP65

115/000 XL 04/40 XL (. 100/) 50/60 II

DIMENSIONS GENERALES ET MONTAGE

Pour monter l'instrument en tableau, pratiquer un orifice de dimensions 92x45 mm et introduire l'instrument par l'avant en plaçant le joint d'étanchéité entre la collerette du cadre du boitier et le panneau.

Placer les clips de fixation de chaque côté dans les rainures de guidage latérales et en les fais sant coulisser vers le tableau, exercer une pression qui sera suffisante au maintien de l'appareil.

Pour démonter l'instrument, soulever légèrement la languette arrière des clips pour libérer ce dernier et retirer le clips vers l'arrière.

Nettoyage. Le panneau frontal doit seulement être nettoyé avec un tissus humidifié avec une eau savonneuse neutre.

NE PAS UTILISIER DESOLVANTS.

DÉCLARATION DE CONFORMITÉ

Fabricant: DITEL - Diseños y Tecnología S.A.

Adresse: Travessera de les Corts, 180

08028 Barcelona

ESPAÑA

Déclare le produit :

Nom : Indicateur digital Modèle : **MICRA-T**

Conforme à la Directive : EMC 89/336/CEE

LVD 73/23/CEE

Date: 17 Mars 1999 Sign: José M. Edo

Position: Directeur Technique

Norme applicable : EN50081-1 Emission Générique

EN55022/CISPR22 Classe B

Norme applicable : EN50082-1 Immunité Générique

IEC1000-4-2 Niveau 3 Critère B

Décharge dans l'air 8kV Décharge par contact 6kV

IEC1000-4-3 Niveau 2 Critère A

3V/m 80..1000MHz

IEC1000-4-4 Niveau 2 Critère B

1kV Lignes alimentation 0.5kV Lignes signal

Norme applicable : EN61010-1 Sécurité Générique

IEC1010-1 Catégorie installation II

Tensions transitoires <2.5kV

Grade de pollution 2 Sans pollution conducteur

Tipe d'isolement

Enveloppe : Double Entrées/Sorties : Principale

GARANTIE

Les appareils sont garantis contre tout défaut de fabrication ou de composants pour une période de 3 ANS à partir de la date d'acquisition.

A la constatation d'un défaut ou d'une anomalie dans l'utilisation normale de l'instrument, pendant la période de garantie, il convient de prendre contact avec le distributeur auprès duquel il a été acquis et qui donnera les instructions opportunes.

Cette garantie ne pourra s'appliquer en cas de non respect de nos consignes de montage, raccordement, utilisation et maintenance.

La validité de cette garantie se limite à la réparation de l'appareil reconnu défectueux. En aucun cas, le constructeur ne saurait être engagé pour les conséquences occasionnées par le mauvais fonctionnement de l'instrument.